生物信息学分析昼夜节律基因脑细胞类型特异性改变对衰老的影响
DOI:
作者:
作者单位:

南京大学医学院附属鼓楼医院麻醉科

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(82171193);江苏省医学重点学科项目(ZDXK202232)


The bioinformatic analysis of circadian rhythm gene alterations with brain cell type specificity and their impact on aging
Author:
Affiliation:

Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 面对人口老龄化带来的挑战,衰老相关神经退行性疾病的发病率持续攀升,而其发病机制尚不明晰,治疗手段有限。本研究聚焦于衰老这一发病基础,采用生物信息学方法,探索衰老过程中脑细胞类型特异性基因表达变化及其对衰老的影响,为深入研究脑衰老的生物学机制提供更多依据。方法 利用R软件中的Seurat包对年轻和老年小鼠脑组织单细胞测序数据集GSE169606进行整合、质量控制、数据标准化和统计分析,通过细胞类型注释与差异基因分析,识别出不同细胞类型下的差异表达基因,并借助基因本体论(Gene Ontology, GO)和京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes, KEGG)进行功能注释和富集分析,通过蛋白质相互作用网络(Protein-Protein Interaction,PPI)分析差异基因之间的相互作用,最后利用cytoHubba插件中MCC、MNC、DMNC和Dgree四种算法确定每种细胞中的枢纽基因。结果通过细胞注释共确定了13个细胞种类,在老年组和年轻组比较后,我们重点对神经元、小胶质细胞、星形胶质细胞和内皮细胞四种主要细胞类型中筛选出的差异基因进行了深入分析。GO分析发现神经元、星形胶质细胞及内皮细胞的差异基因均显著富集于昼夜节律相关生物学途径,KEGG分析发现小胶质细胞和内皮细胞的差异基因均在昼夜节律相关信号通路富集,PPI分析发现神经元、小胶质细胞和内皮细胞的差异基因生物学网络均显著富集于昼夜节律功能聚类模块。进一步,通过对四种算法取交集,筛选出上述细胞类型中的核心基因,在这一过程中,我们还发现小胶质细胞、星形胶质细胞以及内皮细胞中昼夜节律基因的特异性变化。结论 本研究运用单细胞转录组学技术,揭示了衰老过程中神经元、小胶质细胞、星形胶质细胞及内皮细胞中基因差异表达情况。鉴定出了小胶质细胞、星形胶质细胞及内皮细胞中的枢纽基因,特别是三种细胞类型中特异性昼夜节律基因改变,为深入探索大脑衰老的分子机制及开发相关干预措施奠定基础。

    Abstract:

    Objective Facing the challenges posed by population aging, the incidence of age-related neurodegenerative diseases continues to rise, yet their pathogenesis remains elusive with limited therapeutic options. This study focuses on aging as the fundamental basis of disease onset, employing bioinformatic approaches to explore cell-type-specific changes in gene expression during brain aging and their impacts, thereby providing further insights into the biological mechanisms of brain aging. Methods We utilized the Seurat package in R software to integrate, quality control, normalize, and statistically analyze single-cell sequencing datasets (GSE169606) from young and old mouse brains. Through cell type annotation and differential gene expression analysis, we identified differentially expressed genes (DEGs) across various cell types. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used for functional annotation and enrichment analysis, and the interactions between differentially expressed genes were analysed by Protein-Protein Interaction (PPI). Finally, the four algorithms of MCC, MNC, DMNC and Dgree from the cytoHubba plugin was employed to identify the hub genes in each cell. Results A total of 13 cell types were identified through cell annotation. After comparing the aged group with the young group, we focused on in-depth analyses of the differential genes screened from four major cell types—neurons, microglia, astrocytes, and endothelia. GO analysis revealed that the differential genes in neurons, astrocytes, and endothelial cells were significantly enriched in biological pathways related to circadian rhythm. KEGG analysis found that the differential genes in microglia and endothelial cells were enriched in circadian rhythm-related signaling pathways. PPI analysis demonstrated that the biological networks of differential genes in neurons, microglia, and endothelial cells were significantly enriched in circadian rhythm functional clustering modules. Furthermore, by taking the intersection of four algorithms, we identified core genes within these cell types, and in the process, we also discovered specific variations of circadian rhythm genes in microglia, astrocytes, and endothelial. Conclusion This study employed single-cell transcriptomics technology to reveal the differential expression of genes in neurons, microglia, astrocytes, and endothelial during aging. Hub genes in microglia, astrocytes and endothelial were identified, especially the specific changes in circadian rhythm genes across these three cell types. These findings provide a foundation for further exploring the molecular mechanisms of brain aging and developing related intervention strategies.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-26
  • 最后修改日期:2024-10-29
  • 录用日期:2025-04-25
  • 在线发布日期:
  • 出版日期:
防诈骗提示!请勿点击不明链接或添加个人微信。编辑部所有邮箱后缀均为@cnilas.org
关闭